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ABSTRACT

A channel with a rectangular cross-section, 40 to 1 aspect ratio (height is 0.0127
m), and 4.27 m test section (336 channel heights) is used to study the effects of imposed
pulsations on transitional flow phenomena. Periodic velocity variations are produced in
the test section using a single rotating vane located in the flow downstream of the test
section. Flows with Revnolds numbers (Re) ranging from 1100 to 3600 are studied at
Stokes numbers of 4.08 and 5.79 and Strouhal numbers from 0.02 to 0.122 by imposing
pulsations at 1 Hz and at 2 Hz. Time-averaged velocity profiles both within and outside
of the Stokes laver are unaffected by the imposed pulsations at frequencies of 1 and 2
Hz for the entire range of Revnolds numbers studied. Longitudinal turbulence intensity
profiles show a local maxima only at the channel centerline for Reynolds numbers from
1250 to 1550. This is evidence of a center mode of instability. Longitudinal turbulence
intensity profiles show a local maxima at both the channel centerline and y/d of 0.85 for
Reynolds number from 1710 to 2300. As the Reynolds number increases from 2350 to
3400 local maxima of longitudinal turbulence intensity occur only at y,d of 0.9. Nor-
malized profiles of longitudinal turbulence intensity are the same with and without
pulsations for all Reynolds numbers studied with the exception of Reynolds numbers
2400 and 2450. Longitudinal turbulence intensity profiles at a Revnolds number of 2400
show that magnitudes near the channel centerline are reduced at Stokes number of 5.79
(2 Hz pulsations) as compared to without pulsations. At Reynolds number of 2450 the
magnitude of longitudinal turbulence intensity near the channel centerline are reduced
at Stokes numbers of 4.08 and 5.79 (1 Hz and 2 Hz pulsations).
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I. INTRODUCTION

A. BACKGROUND

Flow pulsations and unsteadiness are present in manyv practcal {flow situations oc-
curring in aerodynamics, naval engineering, bioengineering, and wind engineering. Most
of these flows, especially those of technological interest, also undergo transition from a
laminar state to a turbulent state. Transition is extremely complex by itself, but when
it interacts with flow pulsations, modeling and computations to accurately predict the
location and extent of transition and the accompanying changes of important flow
properties are near impossible. Thus, information on the changes of important flow
properties under these conditions are generally obtained experimentally. According to
Shemer [Ref. 1], such experiments should be “restricted to the simplest and most well-
defined conditions,” in order to “obtain a clear phvsical description of a fluid dvnamical
process.”

The present study employs a straight channel not only to investigate a situation
consistent with Shemer’s suggestion, but also because this flow has not vet been studied
experimentally. Even though some experimental results are available for pipe flows, and
some analytic and numeric results are available for channel flows, the author knows of
no other experiments, other than the current work, performed to study the stability or
transition of plane channel flow with imposed pulsations.

The imposed flow pulsations are induced using a single rotating vane located
downstream of the test section. The device is similar to the rotating profiled sleeves
emploved by Tu and Ramaprian [Ref. 2], Ramaprian and Tu [Ref. 3} and Stettler and
Hussain [Ref. 4] to study the influences of sinusoidal puisations on pipe flows. Their
sleeves are used in water and operate simply by altering the exit flow area. Other studies
of the influences of imposed pulsations on pipe flows use reciprocating pistons in cvlin-
ders to produce the unsteadiness [Ref. 5; Ref. 6; Rell 7, Ref. 8; Ref. 9; Ref. 10; Ref. 11].
Simpson et al [Ref. 12] uses a rotating blade damper svstem at the inlet of their wind
tunnel, upstream of screens and honeycomb, in order to study the efTects of unsteadiness
on turbulent boundary layer. By changing the motion of the five individual damper
blades, sinusoidal perturbations to the flow are produced with amplitudes amounting to

11-93 % of the maximum velocity over frequencies from 0.6-2 11z.




Of the experimental studies of transitional flows in pipes, Merkli and Thomann [Ref.
5], Sergeev [Ref. 6], Hino and Swamoto [Ref. 7], Hino et al [Ref. 8], Gerrard [Ref. 9],
Gilbrech and Combs [Ref. 10], Sarpkava et al [Ref. 11}, Ramaprian and Tu [Ref. 3],
Shemer [Ref. 1] and Stettler and Hussain [Ref. 4] also examine the effects of imposed
pulsations. Of these studies, [Ref. 5] to [Ref. 8] investigate the instability of sinusoidally
modulated pipe flow with zero mean flow. Gerrard [Ref. 9] relates vanations of turbu-
lent flow over individual flow pulsations to magnitudes of vorticity diffusion. Diffusion
rates are then determined by a Stokes number equal to the ratio of the pipe radius to
distance the vorticity diffuses during the period of one pulsation cvcle. Gerrard also
suggests that, with high pulsation frequency, viscous effects are confined to a very thin
Stokes laver near the wall where the fluid is retarded. Gilbrech and Combs [Ref. 10] and
Sarpkava [Ref. 11] examine the effects of amplitude and frequency of imposed oscil-
lations on the growth rate of artificially introduced plugs. Both investigators indicate
that oscillations increase the critical Revnolds number as long as they are not so large
as to cause local flow reversals. Ramaprian and Tu [Ref. 3] study transitional pipe flow
at a mean Reyvnolds number of 2100. Due to pulsations, their Reynolds number based
on instantaneous velocity varied between 1278 (fully laminar) and 2872 (fully turbulent).
They indicate that flow pulsations at frequencies ranging from 0.05 to 1.75 Hz increase
the critical Revnolds number onlv when the turbulent intermittency is small. With
higher intermittency levels, the authors suggest that imposed pulsations affect the flow
only when the pulsation frequency is near the characteristic frequency of the turbulence.
Shemer’s [Ref. 1] work focuses on large pulsation amplitudes at a single low frequency.
For a mean Reynolds number of about 4000 and a pulsation frequency of 0.37 Hz, he
concludes that transition is governed primarily by the instantaneous Reynolds number.
Stettler and Hussain [Ref. 4] present results for Stokes numbers as high as 70. The au-
thors provide a three-dimensional map of the stability-transition boundary, and also in-
dicate that transition in pipes is associated with plugs of turbulence which can grow or
shrink in size.

Numerical and analytical investigations of the influences of imposed periodic un-
steadiness on flow in a plane channel are described bv Grosch and Salwen [Ref. 13],
Herbert [Re” 14), Hall [Ref. 15]. von Kerczek [Ref. 16] and Singer et al [Ref. 17; Ref.
18]. In addition to these studies, Tozzi [Ref. 19] provides results of a numerical investi-
gation of the influences of imposed periodic unsteadiness on flow in a pipe, and Davies
[Ref. 20] provides a review of work done on the stability of time periodic flows. Of the
above mentioned analyvtic studies of plane channcl flow, Grosch and Salwen [Ref. 13]




solve a set of linearized equations by integrating through one period of pulsation. Thev
conclude that flows with small amplitudes of imposed periodic unsteadiness are more
stable than steady flows, where the degree of stabilization depends upon interactions
between shear waves generated by the imposed pulsation and flow disturbances. A
modified version of Grosch and Salwen’s energv analvsis is described by Herbert [Ref.
14]. Hall [Ref. 1§] reports results obtained with high frequency pulsations and concludes
that such pulsations are slightly destabilizing irrespective of amplitude. von Kerczek
[Ref. 16] modulates the pressure gradient in a perturbation analvsis, and shows that the
pulsating flow is more stable than the steady flow for frequencies of imposed pulsations
greater than about one tenth of the frequency of the steadv flow neutral disturbance.
However, at both very low and very high frequencies of imposed pulsations, the flow _s
slightlv unstable. Singer et al {Ref. 17: Ref. 1§] describe results from a direct Navier-
Stokes simulation of flow in a plane channel with imposed peniodic unsteadiness and
indicate that imposed sinusoidal pulsations provide a stabilizing effect =+ all but very low
frequencies. Significant vanations in the amplitudes of Tollmein-Schlichting waves are
also noted which depend upon the Strouhal number and the amplitude of the pulsations,
as well as on imtial amplitudes of the Tollmein-Schlichting waves. Tozzi's [Ref. 19] studv
of pipe flow shows that imposed pulsations are stabilizing up to verv high amplitudes
of imposed pulsation, a result in contradiction 1o a number of experimental studies

which show that flow is destabilized even at low amplitudecs.

B. OBJECTIVES

The present study is conducted ‘o provide experimental data which show the influ-
ences of imposed pulsations on laminar, transitional, and turbulent flows in a rectangu-
lar cross-section channel with a 40 to 1 aspect ratio and a L'd of 336 (d=0.0127 m).
Results are given on longitudinal turbulent intensity profiles and mean velocity profiles
both with and without imposed pulsations. The imposed pulsation device is based on
other existing designs, but is applied to a new flow condition: channel flow with air.

Imposed pulsation frequencies aie prescnted as Stokes numbers,

[
-~

st

where 7, 15 the Stokes laver thickness, given by

N
t, = \/ 1.2
st ) -
‘-”fo:c




t, is described by Gerrard [Ref. 9] as the distance vorticity diffuses awayv from the wall
in a single pulsation cycle. The Stokes number then represents the ratio of the channel
half-width to Stokes laver thickness. These definitions of Stokes number and Stokes
laver thickness are strictly applicable only to laminar flows [Ref. 1). In turbulent flows,
the kinematic viscosity should be replaced by an equivalent eddyv viscosity giving a
Stokes laver thickness that is significantly greater.

Strouhal numbers are also provided in situations where the ratio of bulk flow ume
scale to imposed pulsation time scale 1s of interest. Stokes numbers of 4.08 and 5.79 and
Strouhal numbers from 0.033 to 0.121 are produced at Revnolds numbers ranging from
1100 to 3600 (V,, from 1.3 m s to 4.4 m s) , where cach of the latter two quantites is
based on bulk mean velocity and channel height. Experimental results in the transition
regime are included. which 1s important since the authors know of no other experimental

studies in this area.

C. THESIS ORGANIZATION

In the sections which follow, details of the experimental facilities, the unsteadiness
generating device, and the data acquisition svstem are given in section 1. The exper-
imental procedure, including calibration of the Hot-Wire Probe, channel validation, and
flow measurement are described in section I11. Discussion of Results are given in section
IV. Section V contains the summary and conclusions.




1. EXPERIMENTAL FACILITIES

A. CHANNEL

The experimental facility is designed to study the eflects of imposed pulsations on
channel flow. The facilitv is located in the laboratories of the Department of Mechanicul
Engincering of the Naval Postgraduate School, and is shown schematically in Figure 1.
With the present coordinate system, x is the longitudinal coordinate measured from the
downstream edge of the nozzle, v is normal to the top and bottom surfaces of the
channel and measured from the bottom wall, and z 1s the transverse coordinate measured
from the spanwise center of the channel.

The straight test section of the channel 1s 4.27 meters in length with inside dimen-
sions of 1.27 c¢m in height and 50.8 cm in width, giving an aspect ratio of 40 to 1. The
top and bottom walls of the channel are made of 6.35 mm thick plexiglass and supported
by ribs and cross beams along the length of the straight section. The side walls are re-
movable to allow for access to the inside of the channel. The inlet flow is through a
honevcomb. screens and a 20:1 contraction ratio nozzle. Two lavers of cheese cloth are
placed at the inlet to remove contaminates from the air entering the channel.

At the exit of the 4.27 m long test section are threc 10.16 cm long frames. Between
the flanges of these frames are four screens and a honevcomb placed just upstream of
the last screen. The muddle frame houscs the device used to impose unsteadiness onto
the flow. A two dimensional 3 degree diffuser, 45.72 ¢m long 1s located downstream of
the honevcomb section. This diffuser connects to an exit plenum chamber which pro-
vides a volume of uniform low pressure air to prevent transients from the blower from
affecting the flow of air in the test section of the channel. The inside dimensions of the
plenum are 60.96 cm by 60.96 cm by 60.96 cm. The plenum chamber 1s connected to the
suction side of a 5 hp blower via a 5.08% cm inside diameter pipe. Flow through the
channel is metered using a 3.81 c¢cm orifice plate located between the plenum chamber
and the blower.

Bulk flow velocities V,, up to 15 m's may be achieved in the channel. The channel
is designed such that transition occurs after the flow in the channel becomes fully de-
veloped, as indicated by the pressurc gradient in the x direction of the channel which 1s

discussed 1n the results and discussion section.




B. UNSTEADINESS DEVICE

Periodic variations of the flow rate are induced in the test section of wind tunnels,
channel flows and pipe flows by introducing a periodic blockage at the inlet or exit of
flow passages. The most important requirement of such an unsteadiness device is that
it be controllable and perodic without adding other disturbances. To achieve this in an
open circuit induction channel, the unsteadiness device 1s located just downstream of the
test section. By placing the unsteadiness device downstream of the test section, wakes
and other flow disturbances resulting from the operation of the unsteadiness device are
not convected into the test section.

The design used in this study 1s shown in Figure 2. Since the height of the channel
interior is onlyv 1.27 c¢m, a single rotating vane is used to impose the required pulsations
in the flow. The vane is made of a 3.2 mm thick 8.7 mm wide brass strip with rounded
edges that span a portion of the channel height when oriented normal to the {low. The
vane is supported at the ends by a 3.2 mm diameter shaft and bushings that are fitted
to the side walls of the frame. Three intermediate spanwise struts are provided to in-
crease the rigidity of the vane as it rotates. One end of the shaft is fixed to a 4§ tooth
spur gear exterior to the channel. This gear is driven by a spur pinion with 12 teeth
mounted on the shaft of a Superior Electric, M092-FD310 Stepper Motor. The motor
1s driven by a Modulynx MITAS PMS085-D056 Dnve, which is controlled by a
Modulynx MITAS PMS085-C2AR Drive Controller. The motor shaft may be posi-
tioned at 1'200th increments of one motor shaft revolution, and operated at speeds up
to 100 revolutions per second. For each revolution of the vane there are two cvcles of
imposed flow pulsations as shown in Figure 3. Figure 3 shows that in position 2 resist-
ance to flow is maximized and velocity in the straight section of the channel is mini-
mized. The flow resistance is minimized and the velocity i1s maximized when the vane is
in position 4. A gearing ratio of 1 to 4 and two cycles of imposed flow pulsations per
vane rotation equates to one half of one cycle of an imposed flow pulsation for every
motor revolution. The imposed pulsation frequency is set by programming the Drive
Controller for a particular motor speed which then sets the vane rotation rate. The
amplitude of the imposed unsteadiness can be altered by changing the width of the vane.
The variation of the mean velocity due to vane rotation when the flow is fully laminar
or turbulent, is approximately sinusoidal. This waveform results because the velocity is
proportional to the flow restriction of the vane [Ref. 21].

Under actual conditions. the flow around the rotating vane is quite complex. Ve-

locity and pressure variations are affected not only by the varving flow resistance from




the vane, but also by other fluid dvnamic effects such as dvnamic flow separation and
flow inertia. Imposed oscillatory flow behavior is thus different and difficult to predict
compared to quasi-steady flow. The assessment of the performance of the rotating vane
as it produces imposed velocity oscillations in the test section is given by Lagrani et al
[Ref. 21].

C. FLOW MEASUREMENT INSTRUMENTS

A schematic of the flow measurement equipment is presented n Figure 4.

1. Hot-wire Probe and Probe Positioning

A DANTEC 55P5] hot-wire probe with sensor diameter of Sum and sensor

length of 1.25 mm, is used for instantaneous velocity measurements. The probe is
mounted with the wire horizontal and normal to the flow dircction. The probe position
is controlled by a rotatable lever arm for the profile data and a mechanical traverse for
near-wall data. The rotatable lever arm has a v, d range of 0.25 to 0.95, and the me-
chanical traverse has a v'd range of 0.75 to 0.99. The probe position was calibrated us-
ing a plexiglass insert to the channel. The insert, which is the height of the channel, was
etched starting at v'd of 0.5 and incremented at 0.05 v.d units to v.d of 0.95. Since the
mechanical traverse is motor controlled it could be stepped up in microns, therefore it
1s used for near-wall measurements. The mechanical traverse is an ORIEL Motor Mike
Motorized Micrometer and is operated by an ORIEL Dual Control Unit, Model 18009,
The rotatable lever arm is operated manually, and therefore a scale is calibrated against
the v'd probe position as marked on the plexiglass insert. The probe is fixed with respect
to the longitudinal and horizontal axes for both the near-wall and the profile data. The
profile data probe position is at x/d of 294.3 and 27.7 z'd units left of the spanwise cen-
ter, while the near-wall probe position 1s at x'd of 309.4 and 29.8 z'd units left of the
spanwise center.

2. Hot-wire Bridge and Signal Conditioner

A DISA 53M10 constant temperature bridge is used to operate the hot-wire

probe at an oveiheat ratio of 1.8. The hot-wire is calibrated in the potential flow of a
wind tunnel. The DC voltage from the hot-wire bridge is measured using a Hewlett-
Packard 3466A digital multimeter. The velocity is measured using kicl probe and wall
static taps in conjunction with a digital manometer. A DANTEC Model 56N\20 signal
conditioner is used to amplifv and filter the voltage from the bridge. During measure-
ments, an amplifier gain of 10 is used. To reduce the high frequency noise and DC bias,
the low pass filter 1s set to 10kHz and the high pass filter is set at 0.1 Hz.




3. High Speed Data Acquisition System and Data Storage

The output of the signal conditioner 1s fed into a Hewlett- Packard 6944 Multi-
programmer with a buffered high spced A'D conversion system. The Multiprogrammer
cards are driven using Hewlett-Packard CAT 14752A software on a Hewlett-Packard
9000 series Model 310 computer.

For phase sampling. data are acquisitioned so that data are obtained at different
phases of each cvcle of flow pulsation. The pulses used for triggering originate in the
motor used to drive the vane. which generates voltage pulses sequentially in each of the
four field windings used to step the motor. Fifty pulses are available to each field
winding for each revolution of the motor shaft, giving a total of 200 pulses per revo-
lution. The pulses from onc of the four field windings are used to trigger the data ac-
quisition svstem, thus providing a situation in which data acquisition is precisely
synchronized with the vane rotation. For a given vane imposed pulsation frequency,
f.... the data sampling rate (TR) 1s given by:

TR(samples sec) = £, « {pulses‘'motor shaft rev.)
« (motor shaft rev.. imposed flow pulsations)
=/ ic050.2

osc

(84
—

TR(samples sec) = 100.f,..

With this approach, 100 samples of data are obtained, spaced uniformly, over
each period of flow pulsation, providing a phase resolution of 1/100 of the imposed
pulsation cyvcle. Data is acquired for 640 flow pulsations to fill the memory buffer of the
Muluprogrammer (64 kbytes), after which, data is stored in the computer memory. In
the memory, the data is packed into 640 arrays of 100 samples each and stored on a disk
for processing. Because non-uniform width voltage pulses are generated by the motor
drive as the motor is started and stopped, the first 6000 points are ignored as data is
processed, and all acquisitions are completed well before the vane motor is stopped.
When no unsteadiness 1s imposed on the {low, data acquisition is triggered by a square
wave function from a Hewlett-Packard 3311A function generator which is set to the
same frequency as the imposed pulsation. The instantaneous voltage is stored on 3.5
inch disks for processing. The heading to each data set includes the time and date, the
bulk velocity, the pulsation frequency, and the average voltage from the digital multi-

meter.




IlI. EXPERIMENTAL PROCEDURES

A. HOT-WIRE CALIBRATION

The hot-wire sensors are calibrated in the freestream of the wind tunnel located n
the laboratorics of the Mechanical Engineering Department of the Naval Postgraduate
School. During calibration, the hot-wire probe is mounted normal to the flow in the
potential freestream of the wind tunnel, and connected to the same hot-wire bridge pre-
viously discussed. Output from the hot-wire bridge 1s read on a Keithly 169 Digital
Mulumeter. Freestream velocity in the wind tunnel 1s measured utilizing a Kiel pressure
probe, a wall static pressure tap, and a Validvne PS 309 Digital Manometer. Voltage
and differential pressure readings are taken for a range of velocities between 1.0 and 4.0

m s. Following the calibration, the hot-wire is installed in the straight channel.

B. DATA PROCESSING
1. Bulk Velocity
The bulk flow velocity of the channel is determined from the pressure drop
across the orifice plate located in the outlet piping which connects the outlet plenum and
the blower. The pressure differential across the onfice plate is measured in inches of
water using a Validvne Model PS 309 Digital Manometer. Figure 5 shows the relation-
ship of bulk velocity to pressure differential across the orifice plate. This same bulk ve-
locity 1s then used to determine the channel Revnolds number and Strouhal number.
2. Instantaneous Velocity
Instantaneous voltages from the hot-wire are converted into instantaneous ve-
locities using a look-up table that accounts for hot-wire calibration coeflicients, amplifier
gains and mean voltage levels. Such instantaneous velocity data are shown in Figurc 6
along with the corresponding phased-averaged velocity trace for a Revnolds number of
3660 ( V,, =4.38 m's) and a Strouhal number of 0.036 ( £, is 2 Hz).
3. Phase Averaging
With imposed periodic flow, instantaneous velocities can be considcred to be the
sum of threc components such that U = U+u+u’, where U is the time-averaged velocity,
u is the periodic velocity, and v’ is the fluctuating component. In the present study,
u and U are combined as the phase-averaged velocity (0) such that U= & + v, following

Ramaprian and Tu [Ref. 3]. Thus, for a steadyv flow with no periodic velocity, u is then




equal to T. U is then determined from phase-averaging instantaneous velocity results

using the equation given by

ncvel
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Here, m and n correspond to the number of cvcles and to the number of locations across
each phase,respectively, where data are sampled. Typicallv 580 cvcles are ensemble av-
eraged to obtain a phase-averaged velocity trace. When time averaged velocity U is de-
termuned, averages are again obtained {rom 5§ thousand points.

Occasionally the digitized hot-wire signal is contaminated bv noise. The source
of the noise is the electromagnetic field present in the laboratory. This noise is a dis-
turbance of the data signal that appears as a singular high voltage spike which saturates
the + 10 volt analog-to-digital converter. These data samples could not be due to flow
behavior because of their magnitudes, abrupt random nature, and because thev are not
apparent in analog voltages from the DANTEC hot-wire bridge or in analog spectra of
these voltage signals. When the noise causes individual data samples to drop out. they
are replaced using the sample acquisitioned 100 points, before which, with phase aver-
aging, is the point at the same phase from the previous flow pulsation. These occur-
rences happen less than 1% of the data sampling time, and consequently, no evidence

of these corrections is evident in ensemble and time averaged results.




IV. DISCUSSION OF RESULTS

A. INLET TURBULENCE INTENSITY MAGNITUDES

The normalized longitudinal turbulence intensity (\:TT;/E) at the exit of the nozzle
(and the inlet of the straigit section) of the channel was measured using a single hot-wire
sensor placed at v d of 0.5 and x d of 4.17. Tigure 7 shows the magnitudes for three
Revnolds numbers: 1103, 2003, and 3585. Data for Revnolds number of 1103 and 2003
vary between 0.001 and 0.0014 over the pulsation frequency range of 0 to 4 Hz. The
nor ialized longitudinal turbulence intensities are somewhat higher for a Revnolds
number of 3585. At this higher Revnolds number, the normalized longitudinal turbu-
lence intensity varies between 0.0017 and 0.0024 over the pulsation range of 0 to 4 Hz,

with a minimum value 0. 0.0017 occurring at 3 Hz.

B. FLOW DEVELOPMENT VALIDATION

The present experiment was planned ¢ that measurements are taken downstream
of the portion of the channel whcre the flow is developing. To determine where the flow
becomes fully developed, the piessurc ;radicnt along the length of the channel was
measured. The flow is considered to be fully developed when the pressure gradient is
linear. Figure 8 shows that this occurs at a a.'d position of approximately 54 when Re
1s 1100, at a x'd position of approximatelv 108 when Re is 2010, and at a x'd position
of approximately 168 when Re is 3585. Probe positions are in the fully developed region
at x/d of 294.3 for profile data and at x'd of 309.4 for near-wall data.

Han [Ref. 22] gives the following equation to predict fully developed channel flow:
% = 4¢Re 4.1

where ¢ = 0.0115 for the present channel. From this equation, fullv developed flow is
present at x d=165.6 for a Revnolds number of 3600, and at x.d= 50.6 for a Revnolds
number of 1100.

C. PROFILE DATA

Profile data are taken using a single hot-wire sensor placed at an x. d of 294.3 and a
z.d of 27.7. A manual traverse is used to position the hot-wire sensor over v'd from 0.5
1o 0.95.

I




1. Mean Velocity Profiles
Dimensional mean velocity (V,,) profiles are shown in Figures 9 through 32.
As the Reynolds number increases, magnitudes of mean velocity increase, and profiles
become less parabolic. Profiles with imposed pulsations are quantitativelv similar to
profiles without imposed pulsations. Mean velocity profiles normalized by the centerline
mean veloaty (V,, /V,_,) arc presented in Figures 33 through 52.
2. Longitudinal Turbulence Intensity Profiles
Longitudinal turbulence intensity (V,,,) profiles are presented in Figures 53
through 76. Longitudinal turbulence intensity values are normalized by the centerline
velocity (V,,./V,..) in Figures 77 through 96, and by the local mean velocity (V,,./V,..) in

Figures 97 through I16.

Figures 53 to 57 show that maximum turbulence intensity occurs at the channel

avg

centeriine for Revnolds numbers from 1100 to 1550. Such behavior evidences a center
mode of instability described by Zang and Krist [Ref. 23]. As Revnolds number in-
creases to 1710 and higher, profiles show a local maxima which increases in magnitude
near the wall at y/d=0.85 as channel center magnitudes decrease (Figures 58 through
72). At Revnolds numbers of 2400 and 2450, Figures 67 and 68 show that centerline
magnitudes are further reduced by pulsations. Figure 67 for the lower Revnolds number
shows the centerline magnitude is reduced by 2 Hz pulsations. Figure 68 for the higher
Reynolds number shows the centerline magnitude is reduced by both 1 Hz and 2 Hz
pulsations. Figures 77 through 96 present profiles of the longitudinal turbulence inten-
sity normalized by the centerline velocity (V,,./V,.) which show the same trends as the
dimensional longitudinal turbulence intensity profiles. Longitudinal turbulence intensity
profiles normalized by the local mean velocity (V,,,/V,,,) in Figures 97 through 116 show
magnitude increases with Reynolds number which are most rapid near the wail. Of
course these profiles are unaffected by pulsations with the exception of profiles at
Reynolds numbers of 2400 and 2450.

D. NEAR-WALL DATA

Near-wall data are taken using a single hot-wire sensor placed at an x'd of 309.4 and
a z/d of 29.8. The mechanical traverse is used to position the hot-wire sensor over v'd
from 0.75 to 0.99 for Reynolds numbers of 1150 and 2010, and over v.d from 0.7 to 0.99
for a Reynolds number of 3585. Near-wall data are presented in graphs along with re-

sults from the previous section and from Koth's {Ref. 24] experiments.
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1. Shear Velocity Determination
In several of the near-wall profiles, the shear velocity i1s used to normalize the
local mean velocity and the longitudinal turbulence intensity. The shear velocity (L)

1s given by the following equation:

where

0., = density of air

7, = shear stress at the wall given by

dpP

. __d.dp
v 2 dx
where

d= channel height

4 pressure gradient

dx

Substituting values for the channel height and the density of air, the shear velocity is
related to the pressure gradient using an equation of the form:

Ut =7.149. /S 4.3
dx
From this equation, for the three Reynolds numbers examined, shear velocities are 0.102
m's for Re= 1150, 0.126 m/s for Re= 2010 and 0.278 m's for Re= 3585.
2. Local Mean Velocity Profiles

Figures 117 through 129 present local mean velocity (V,,,) profiles and various
normalized local mean velocity profiles measured in near-wall regions. Figures 117 to
119 show dimensional mean velocities (V,,,) . These near-wall data are somewhat higher
than both the profile data and Koth's [Ref. 24] data, but the trends are identical. Locai

mean velocity profiles normalized by the centerline velocity (V,,,/V,...) are presented in

o
Figures 120 to 123. These figures show good agreement with profile data and Koth {Ref.
24] data, however, near the wall, magnitudes of differences increase. Figures 124
through 126 present the local mean velocity profiles normalized by the bulk vclocity
(V,y/Vss) . Again, the near-wall data is somewhat higher than the profile data in these

figures.
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Local mean velocity profiles normalized by the shear velocity (V,,,/U-) plotted
against log (v U-/v) are presented in Figures 127 through 129. Figures 128 and 129 in-
clude the equation for the turbulent law of the wall, given by:

\'a\:e i ,"L’+
= =Tln — + 5.0 4.4
where
k=04

Included on Figures 127, 128, and 129 is the equation for laminar flow given by

4.5

Very near the wall, mean data for Re= 1150 show agreement with this equation. Log
law region turbulent data for Re= 3585 lie above the law of the wall equation.
3. Longitudinal Turbulence Intensity Profiles

Near-wall longitudinal turbulence intensity profiles are shown in Figures 130
through 141. As for the local mean velocity results, the dimensional plots are presented
first, followed by the various normalized plots. Figures 130 through 132 give dimen-
sional longitudinal turbulence intensity (V,,,) profiles. Near-wall data, profile data, and
Koth’s [Ref. 24] results agree well. Figure 133 through 135 show longitudinal turbulence
intensity profiles normalized by the centerline velocity (V,,,/V,,,) . Figures 136 through
138 show near-wall iongitudinal turbulence intensity profiles normalized by bulk veloci-
ties (V,,./V,,) . Both sets of normalized near-wall profiles show slight disagreement with
profile data and Koth's [Ref. 24] results. Longitudinal turbulence intensity profiles
normalized by the shear velocity (V,,/U~) are presented in Figures 139 through 141.
For all three Revnolds numbers investigated, intensity profiles with and without imposed
pulsations are the same.

E. PHASE AVERAGED VELOCITY MAGNITUDE RESULTS

:1gures 142 through 144 show peak to peak amplitudes of phase-averaged velocities
normalized by the bulk velocity (Au/V,,) with imposed pulsations at a Stokes number
of 5.79. Near-wall results are given in Figure 142 for Reynolds numbers of 1150, 2010,
and 3585. Data at Revnolds numbers of 1100 and 3400 are shown in Figures 143 and
144. Figure 143 also shows profiles for Reynolds numbers from 1920 to 2200, whereas
Figure 144 shows profiles for Reynolds numbers from 2300 to 2500. The laminar profile




for Re=1100 in Figures 143 and 144 shows a local maxima of 0.07 for y’'d of 0.65 and
approaches zero near the wall. The turbulent profile for Re= 3400 also shows a local
maxima of 0.15 for y/d of 0.9,and also approaches zero near the wall.

Phase shift data for a Revnolds number of 1150 are shown in Figure 145. These
data. designated as 0 , were measured in the near-wall region, and actually represent the
phase angle munus 270 degrees. 8 varies from a high of 29 degrees at v d of 0.75 to a
munimum of 7 degrees at v'd of 0.97.




V. SUMMARY AND CONCLUSIONS

The efTects of imposed pulsations on profile and near-wall flow characteristics at
Stokes numbers of 4.08 and 5.79 are studied 1n a straight channe! with laminar, transi-
tional and turbulent flows. Imposed pulsations at 1 Hz and 2 Hz are produced using
a single rotating vane located downstream of the test section. Profile data are taken for
Reynolds numbers from 1100 to 3400. Near-wall data for three Reynolds numbers,
1150, 2010, and 35835 are also examined.

Longitudinal turbulence intensity profiles show a local maxima only at the channel
centerline for Revnolds numbers from 1250 to 1550. This is evidence of a center mode
of instability. Longitudinal turbulence intensity profiles show a local maxima at both
the channel centerline and v'd of 0.85 for Revnolds number from 1710 to 2300. As the
Revnolds number increases from 2350 to 3400 local maxima of longitudinal turbulence
intensity occur only at v/d of 0.9.

Effects due to imposed pulsations are apparent only at Revnolds numbers of 2400
and 2450. Longitudinal turbulence intensity profiles at a Revnolds number of 2400 show
that magnitudes near the channel centerline are reduced at Stokes number of 5.79 (2
Hz pulsations). At a Revnolds number of 2450, the magnitude of longitudinal turbu-
lence intensity near the channel centerline are reduced at Stokes numbers of 4.08 and
5.79 (1 Hz and 2 Hz pulsations). These changes are believed to result from destabilizing
influences of pulsations which cause the flow to become fullv turbulent at Revnolds
numbers lower than if no pulsations are imposed. The fluctuations in a fully turbulent
flow are less intense than in a transitional flow at slightlv lower Revnolds numbers re-

sulting in lower longitudinal turbulence intensities.
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APPENDIX A. SOFTWARE DIRECTORY

DEANIS: Determines channel mass flow rate, bulk velocity and Revnolds number
from orifice plate pressure drop. The program requires ambient temperature and pres-
sure inputs which can be entered manually or via a data acquisition system connected
to thermocouples and or pressure transducers. Once ambient conditions are established,
air density 1s calculated and orifice pressure drop is entered manually. Originally de-
signed for curved channel applications, this version has been specifically modified for
straight channel use.

HWCAL : Dectermines the constants for the King's Law calibration of the hot-wire.
The program also provides a polvnomial fit of the calibration data.

HOTWIREPAY :  Reads the data stored in the A'D buffer of the high speed data
acquisition system and stores the information on nucro diskettes. Manual inputs are :
triggering frequency, hot-wire DC voltage (ungained), oscillation frequency (flow
blockage), bulk velocity, Revnolds number, and date and time of run.

DATAP : Calculates instantaneous and phase-averaged velocities. Initially a look
up table is created. Effective velocities are calculated from the effective voltage values
and stored for follow-on calculations. The hot-wire calibration constants obtained from
HWCAL, and the amplifier gain are incorporated into these calculations. The velocity
calibration is given by :

Uy = k(E}~ E)"

where k 1s the proportionality constant, E,_, is the effective voltage, and E, is the
reference voltage at no flow. N is a constant (0.45) for moderate Revnolds numbers.
Once the look up table is created, the program reads the instantaneous voltage values
from the data file and converts them to instantancous velocities. A plot of the instan-
taneous velocity versus time can be gencrated for anyv of 580 cvcles (the first 60 cvcles
are discarded toallow for flow stabilization as the unsteady device is started).

Next the program phasec averages the 380 cvcles, and velocity versus phase angle (of
the flow blockage) plots are available. Two plots are available from the averaged values

U versus phase angle and \;‘"E’ [u versus phasc angle. u is the phase averaged velocity,
\//f_f’ is the phase averaged root mean squared (rms) velocity, and U is the average ve-
locity. In the case where there is no imposed unsteadiness, the phase averaged velocity,

U, is equal to the time averaged velocity, U.




APPENDIX B. FIGURES

18




4301

GMO0OAAN0M

221430 AQVdLSND

404 ANVE4
ATZ2208

HOLILIBS AHIINELS

&d ¥} v
| 7
2014
SHB2NOS
SH43NIS 404 SaAMVU4

804 Sauvud

400178 03 _

44¥14d

—D=

ﬁ

3214140

GMO02A3N0N

—e

4 34V

HONdNd4

¥asa4ddla

Experimental Channel

Figure 1.

19




1dVHS NOLON

dV3I ¥NdS HLOOL N-\

/

1IN TANNYHD ——

9

JOLOM
oleadq
260N

4VaD UNdS HIOOL 8»

O

O O

@)

sttininunnrl.bunuwy

O

aNVa

O

ALBLULULURRLC VLR RN LR W ¥ AR NN YT T T X

O

O O

O

O

mvlnltnnL

J0NN14 ll\

SONlMVEE '—

Unsteadiness Device

Figure 2.

20




Velocity

A 4
1 >
3 5
Phase Angle
2
Channe!l Wall Vone  Vane  Imposed Osc.
Position Angle Phase Angle
\ (Deg.) (Deg.)
Fiow g
Direction > Vane ! 45 o)
AT T ITNTTITT?
o>
Channe! Wwall
= 2 90 90
TTTITI T v .
bllbdott ¥ st ot s
= )r‘ 3 135 180
EEEEa taaasd
= Jﬁ’ 4 180 270
T
=> 5 225 360

Figure 3. Quasi-Steady Flow Variations With Vane Positions

21




SCHEMATIC OF FLOW MEASUREMENT EQUIPMENT
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Figure 34. Profile Data: Mean Velocity Normalized by the Centerline Velocity vs
y/d; Re: 1250
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y/d; Re: 1920
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Figure 41.

Profile Data: Mean Velocity Normalized by the Centerline Velocity vs

y/d; Re: 2000
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y/d; Re: 2300

63




N ~N

X I
8 B .
5 § T &
b
: H
. * ]

’l
'l
'l
o
! 0
H ™
J N
[ e
{ «
N - o ) @ © ) o ) N o
- - o [ =] o o o
xewp /Basp
Figure 46.  Profile Data: Mean Velocity Normalized by the Centerline Velocity vs

y/d; Re: 2350

1.0

0.9

0.8

0.7

0.6

0.5

Y/d




~N ~N
P X
o 8 ~N N
s 8 T F
H . .
Loa
a ]
S
i : :
]
<
o
o
’l
@
N o
v
b
=
o ~
] [~ ] d
<<
N
Q
m -]
o
—— — v i
. o~ o @© © - o~ o®
- - © o o () (-]
xswp/Basp

Figure 47. Profile Data: Mean Velocity Normalized by the Centeriine Velocity vs
y/d; Re: 2400
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Figure 48. Profile Data: Mean Veloctiy Normalized by the Centerline Velocity vs
y/d; Re: 2450
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Figure 51. Profile Data: Mean Velocity Normalized by the Centerline Velocity vs
y/d; Re: 3100

69




0/200Hz

2Hz2

-———.—-—
cnc=ffjee=

o
-
il
e’
/‘ c
Pl
(4 o
&
&’
L
¢
4
(4
’
'’
@
o
.-}
b
B
o ~
o o
<
™
ae
@
[+ o
@
o
n
i g L4 v g o LS o
N e «© © - N o
- - P (< -1 o (-]
xswp/Basy
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y/d; Re: 3400
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Figure 37. Profile Data: Longitudinal Turbulence Intensity vs y/d; Re: 1550
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Figure 61. Profile Data: Longitudinal Turbulence Intensity vs y/d; Re: 2000
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Figure 62. Profile Data: Longitudinal Turbulence Intensity vs y/d; Re: 2040
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Figure 63. Profile Data: Longitudinal Trubulence Intensity vs y/d; Re: 2090
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Figure 66. Profile Data: Longitudinal Turbulence Intensity vs y/d; Re:
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Figure 67.
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Figure 70. Profile Data: Longitudinal Turbulence Intensity vs y/d; Re: 2800

88

Yi/d




X I

88NN
s 8§ = ZF
LoL
b

3100

Re

0.8

Figure 71.

0.1
0.0

(s/w) swap

Profile Data: Longitudinal Turbulence Intensity vs y/d; Re:

89

1.0

0.9

0.8

0.7

0.6

0.5

3100

Y/d




0/200H2
2Hz

-—m.——
meoufiess

©
-
— 38
-"'-

’.." ° o
-o"'. = -]
s < .
S, ™M o

N
‘\

ae

[

[+
@
() o

<
0
~
(=]
@
o
n
v - v o
e 0 - ] N - ©
o [~ (-] o (=] o [~
(s/w) swup

Figure 72. Profile Data: Longitudinal Turbulence Intensity vs y/d; Re: 3400
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Figure 77.  Profile Data: Longitudinal Turbulence Intenstiy Normalized by the
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Figure 78.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 1250
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Figure 79.  Profile Data: Longitudinal Turbulence Intensity Normalized by the

Centerline Velocity vs y/d; Re: 1350
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Figure 80. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 1440
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Figure 81.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 1550
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Figure 82.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 1710
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Figure 83.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d: Re: 1850
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Figure 84. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 1920
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Figure 85.

Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 2000
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Figure 87.  Profile Data: Longitudinal Turbulence Intenstiy Normalized by the
Centerline Velocity vs y/d; Re: 2090
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Figure 88.  Profile Data: Longitudinal Turbulence Intensity Normalized by the

Centerline Velocity vs y/d; Re: 2200
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Figure 89. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 2300
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Figure 90.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 2350
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Figure 91.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 2400

109




N ~N
5
[« ] ~N ~N
S § T &
] . ]
i : '
) p a
: H
» ]
°©
A0
=1
s ]
= < e
\‘s. N °
““‘ as
v Q
3 [+ o
&
N ©
<)
-]
>
~
[=]
©
4 o
]
1 ]
1
1 1
L 4
]
1 ]
]
L
H———— o
o
- = 3 3 3
o c P~ c o

XBUWA /SWIA

Figure 92.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 2450
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Figure 93.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 2500
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Figure 94.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 2800
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Figure 95. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 3100
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Figure 96.  Profile Data: Longitudinal Turbulence Intenstiy Normalized by the
Centerline Velocity vs y/d; Re: 3400
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Figure 98.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 1250
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Figure 99.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 1350
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Figure 100. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 1440
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Figure 101.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 1550
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Figure 102. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 1710
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Figure 103. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 1850
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Figure 104.  Profile Data: Longitudinal Turbulence Intensity Normalized by the

Mean Velocity vs y/d; Re: 1920
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Figure 105. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 2000
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Figure 106.  Profile Data: Longitudinal Turbulence Intenstiy Normalized by the
Mean Velocity vs y/d; Re: 2040
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Profile Data: Longitudinal Turbulence Intenstiy Normalized by the
Mean Velocity vs y/d; Re: 2090
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Figure 108. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 2200
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Figure 109. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 2300
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Figure 111.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 2400
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Figure 112. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 2450
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Figure 113.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 2500
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Figure 114. Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 2800
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Figure 115.  Profile Data: Longitudinal Turbulence Intensity Normalized by the
Mean Velocity vs y/d; Re: 31" 0
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Figure 116.  Profile Data: Longitudinal Turbulence Intenstiy Normalized by the
Mean Velocity vs y/d; Re: 2700
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Figure 119.
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Near-Wall Data: Mean Velocity Normalized by the Centerline Velocity
vs y/d; Re: 1150
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Figure 121. Near-Wall Data: Mean Velocity Normalized by the Centerline Velocity
vs y/d; Re: 2010
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Figure 122.
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Figure 123. Near-Wall Data: Mean Velocity Normalized by the Centerline Velocity
vs v/d; Composite Near-Wall Profiles
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Figure 124. Near-Wall Data: Mean Velocity Normalized by the Bulk Velocity vs
y/d; Re: 1150
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Figure 125. Near-Wall Data: Mean Velocity Normalized by the Bulk Velocity vs
y/d; Re: 2010
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Figure 126. Near-Wall Data: Mean Velocity Normalized by the Bulk Velocity vs

y/d; Re: 3585
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Figure 128. Near-Wall Data: Mean Velocity Normalized by the Shear Velocity vs

log(yU*/Nu); Re: 2010
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Figure 129. Near-Wall Data: Mean Velocity Normalized by the Shear Velocity vs

log(yU*/Nu); Re: 3585
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Figure 132. Near-Wall Data: Longitudinal Turbulence Intensity vs y/d; Re: 3585
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Figure 133. Near-Wall Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 1150
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Figure 134.

152




S 8 sz
& 8 8 g 8
g 2 3 2 3
S &2 8 & & B8
E:ll
IR I
I T | (=]
- | -
--<40
(-]
o
Ty h -]
(<] -~
0 >
™
o
m @®N
o
~
2 o 8 3 g °
o o o (=] (=]

XBWA/SWIA

Figure 135. Near-Wall Data: Longitudinal Turbulence Intensity Normalized by the
Centerline Velocity vs y/d; Re: 3585
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Figure 136. Near-Wall Data: Longitudinal Turbulence Intensity Normalized by the
Bulk Velocity vs y/d; Re: 1150
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Figure 137. Near-Wall Data: Longitudinal Turbulence Intensity Normalized by the
Bulk Velocity vs y/d; Re: 2010
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Figure 138. Near-Wall Data: Longitudinal Turbulence Intensity Normalized by the
Bulk Velocity vs y/d; Re: 3585
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Figure 139. Near-Wall Data: Longitudinal Turbulence Intensity Normalized by the
Shear Velocity vs y/d; Re: 1150
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Figure 140. Near-Wall Data: Longitudinal Turbulence Intensity Normalized by the
Shear Velocity vs y/d; Re: 2010
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Figure 141. Near-Wall Data: Longitudinal Turbulence Intensity Normalized by the
Shear Velocity vs y/d; Re: 3385
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